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ABSTRACT
Temporal patterns composed of symbolic intervals are com-
monly formulated with Allen’s interval relations originating
in temporal reasoning. We show that this representation
has severe disadvantages for knowledge discovery. The pat-
terns are not robust, in the sense that small disturbances
of interval boundaries lead to different patterns for similar
situations. The representation is ambiguous since the same
pattern can have quantitatively widely varying appearances.
For all but very simple cases the patterns are not under-
standable because the textual descriptions are lengthy and
unstructured. We present the Time Series Knowledge Rep-
resentation (TSKR), a new hierarchical language for interval
patterns to express the temporal concepts of coincidence and
partial order. We demonstrate the superiority of this novel
form of representing temporal knowledge over Allen’s rela-
tions for data mining. Results on a real data set support
our claims and show a successful application.

Categories and Subject Descriptors
I.5 [Computing Methodologies]: Pattern Recognition

General Terms
Models

Keywords
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1. INTRODUCTION
Symbolic interval time series are an important data for-

mat in temporal knowledge discovery [11, 13, 29, 7, 14, 12,
5, 19, 30]. In particular, numerical time series are often con-
verted to symbolic interval time series by segmentation [14,
12], discretization [29] or clustering [11]. Alternatively, the
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intervals can be obtained directly from other temporal data,
e.g., video [9] or association rules over time [21].

Mining such data for patterns has largely been performed
based on Allen’s interval relations [3], e.g., in [13, 7, 12,
5, 19, 30]. The relations were originally developed in the
context of temporal reasoning where inference about past,
present, and future supports applications in planning, un-
derstanding, and diagnosis. The input usually consists of
exact but incomplete input data and temporal constraints,
often expressed by Allen’s relations. Typical problems in-
clude determining the consistency of the data and answering
queries about scenarios satisfying all constraints. But these
problems do not occur in the data mining context: almost
the complete interval data is given and meaningful and un-
derstandable patterns are searched [12]. One may have to
cope with some missing data, but more importantly with
possibly noisy and incorrect data.

We show that Allen’s relations have severe disadvantages
when used for pattern discovery from interval time series.
We introduce an alternative representation for temporal
knowledge in interval data and compare it to approaches
using Allen’s relations conceptually and experimentally. We
show that our representation is more expressive, more ro-
bust, and arguably more understandable than the patterns
of Höppner [12] using Allen’s relations.

2. MOTIVATION
The 13 interval relations of Allen are [3]: before, meets,

overlaps, starts, during, finishes, the corresponding inverses
and equals. They can describe any relative positioning of
two intervals. The relations are commonly used for the for-
mulation of temporal rules involving intervals [13, 7, 12, 22,
5, 19, 30].

Three methods use Allen’s relations for unsupervised rule
mining from symbolic interval data with variants of the
Apriori algorithm. In [13] interval patterns are restricted to
right concatenations of intervals to existing patterns, using
one of Allen’s relations to describe the relative positioning
of the new interval to the interval of the complete pattern.
Similarly, in [7] the patterns are restricted to composites of
two already significant patterns or single intervals. Both
approaches thus use at most k − 1 relations for k intervals.

In contrast, the patterns of [12] list all k(k−1)
2

pairwise rela-
tions of the intervals within a pattern. In [19] the problem
of mining patterns from interval data was rediscovered. The
pattern format of [12] is used with a subset of Allen’s rela-
tions. The patterns are mined with a tree-based enumer-



ation algorithm [4]. In [30] the patterns of [12] are mined
with a modified sequential pattern algorithm [15].

We think that using Allen’s relation to represent interval
patterns has severe disadvantages for knowledge discovery
and first formulate and justify our claims with examples.

(1) Patterns from noisy interval data expressed with
Allen’s interval relations are not robust: Several of Allen’s
relations require the equality of two or more interval end-
points. Small disturbances can create patterns where a very
similar relationship between intervals is fragmented into dif-
ferent relations as defined by Allen’s relations. Figure 1
shows several examples of almost equal intervals.

(a) overlaps (b) during (c) finishes

Figure 1: Examples for different patterns according
to Allen that are fragments of the same approximate
relation almost equals.

(2) Patterns expressed with Allen’s interval relations are
ambiguous: The same relation of Allen can visually and
intuitively represent very different situations. In Figure 2
three very different versions of the overlaps relation are
shown as an example. Even more ambiguous is the com-
pact representation of patterns from [13] or [7], several dif-
ferent descriptions are valid for the exact same pattern (see
Figure 3).

(a) small (b) medium (c) large

Figure 2: Three instances of Allen’s overlaps rela-
tion with large quantitative differences.

Figure 3: Pattern that can be described by three
different compact rules using Allen’s relations.

(3) Patterns expressed with Allen’s interval relations are
not easily comprehensible: The representation of patterns
with Allen’s relations does not follow the Gricean maxims
[10] suggested for the representation of knowledge discovery
results to humans [25]. For example, the maxim of manner is
violated. Since the compact format of [13, 7] is ambiguous,
patterns need to be expressed with an unstructured list of
pairwise relations of all intervals [12] that grows quickly with
the number of intervals.

We present the Time Series Knowledge Representation
(TSKR), a new hierarchical language for the representation
of temporal knowledge based on interval times series. The
TSKR extends the Unification-based Temporal Grammar
(UTG) that was proposed by Ultsch in [26, 27] and applied
to the analysis of sleeping disorders in [11]. The central pat-
tern elements of the UTG are Events and Sequences shown
in Figure 4. Events combine several more or less simul-
taneous intervals, a robust version of Allen’s equals. The

number of intervals in an Event is restricted, however, to
the dimensionality of the interval series. Sequences describe
an ordering of several Events with immediately followed by
or followed by after at most t time units.

Figure 4: Core patterns of the UTG: Events de-
scribe a group of almost simultaneously starting
and ending intervals, Sequences describe an order
of Events.

The TSKR extends the UTG significantly by allowing an
arbitrary number of coinciding parts of intervals in constrast
to the fixed number of complete intervals within Events and
by relaxing the total order in Sequences to a partial order.
For more details on the relation of the TSKR to the UTG
we refer the interested reader to [18]. Other interval min-
ing methods are not as powerful as Allen’s relations or the
UTG. In [29] only containments of intervals and in [14] only
associations of successive intervals are searched.

3. TIME SERIES KNOWLEDGE REPRE-
SENTATION

The TSKR is a hierarchical interval language describing
the temporal concepts of duration, coincidence, and partial
order in interval time series. The basic primitives are la-
beled intervals called Tones representing duration. A Tone
pattern describes a property of the temporal process that is
(repeatedly) observed during time intervals. For example,
a Tone labeled temperature increasing could be obtained by
segmenting a numerical time series and considering the slope
on each segment. In the following paragraphs we describe
the higher level TSKR patterns composed of Tones. Simul-
taneously occuring Tones form a Chord, representing coinci-
dence. Several Chords connected with a partial order form
a Phrase. We only briefly outline the mining algorithms, for
more details see [17, 18].

In data mining the input data is usually measured at
discrete time points of a certain resolution representing a
sample of the generating time continuous process. Without
loss of generality, we define the following patterns based on
the natural numbering T of a set of uniformly spaced time
points. Let Σ be a set of unique symbols.

Definition 1. A symbolic time interval is a triple
[σ, s, e] with σ ∈ Σ, [s, e] ∈ T

2, s ≤ e. The duration
of a symbolic interval is d([s, e]) = e − s + 1. We write
[σ, s, e] ⊆ [σ′, s′, e′] if s′ ≤ s and e ≤ e′ with equal-
ity iff s = s′ and e = e′. A symbolic time interval
[σ, s, e] is maximal if ∀[σ′, s′, e′] ⊃ [σ, s, e] σ′ 6= σ. If
{s, ..., e} ∩ {s′, ..., e′} 6= ∅ we say that the intervals [σ, s, e]
and [σ′, s′, e′] overlap.

Definition 2. We define a partial order ≺ of intervals
as [s1, e1] ≺ [s2, e2]⇔ e1 < s2. We say that [s1, e1] is before
[s2, e2].



Definition 3. A symbolic interval series is a set of non-
overlapping symbolic time intervals I = {[σi, si, ei]|σi ∈
Σ, [si, ei] ∈ T

2, i = 1, ..., N ; ej < sj+1, j = 1, ..., N − 1}.
The duration of an interval series is d(I) = ΣN

i=1d([si, ei]).

Definition 4. A symbolic interval sequence is a set of
symbolic time intervals I = {[σi, si, ei]|σi ∈ Σ, [si, ei] ∈
I, i = 1, ..., N}

At the core of our knowledge representation stand the
patterns and the occurrences of patterns in the input data.

Definition 5. Let Λ be a finite set of labels λ. Let l :
Σ 7→ Λ be the function assigning each symbol a label. Let Φ
be a set of characteristic functions φX : I→ {True,False},
where X is some arbitrary input data. A pattern (σ, λ, φX )
is a semiotic triple [26] composed of:

• σ ∈ Σ, a unique symbol representing the pattern in
higher levels constructs ( syntax),

• λ = l(σ) ∈ Λ, a label providing a textual description of
the practical meaning of the pattern (pragmatic),

• φX ∈ Φ, a characteristic function determining when
the pattern occurs ( semantic).

The semantic of φ and the data type of X will differ for the
specific patterns defined below. We write φ for φ = True

and ¬φ for φ = False.

The concept of semiotic triples is consistently used on
all levels of the TSKR pattern hierarchy. It enables the
pragmatic annotation of each pattern with labels to aid the
later interpretation when used as parts of larger patterns. A
value-based Tone obtained by discretizing a univariate time
series vt ∈ R t ∈ T has a characteristic function of the form
φA([s, e]) ← vmin < vi ≤ vmax∀i ∈= {s, ..., e} ⊂ T where
vmin, vmax ∈ R and could be labeled high or medium.

Definition 6. An occurrence of a pattern is an inter-
val [s, e] ∈ I with φX ([s, e]). A maximal occurrence is an
occurrence [s, e] such that ∀[s′, e′] ⊃ [s, e] ¬φX ([s′, e′]).

In this study we assume a set of Tones given. The obser-
vations according to the characteristic function of a single
Tone form a symbolic interval series, the observations of
several Tones form a symbolic interval sequence.

Definition 7. A Chord pattern is a semiotic triple c =
(σ, λ, φT

T ) with σ ∈ Σ, λ ∈ Λ, and a characteristic function
φT
T ∈ Φ indicating the simultaneous occurrences of k Tones

T = {ti = (σi, λi, φi)|i = 1, ..., k, k > 0} on a given time in-
terval according to the interval sequence T with occurrences
of the Tones T :

φ
T
T ([s, e])← φ1([s, e]) ∧ ... ∧ φk([s, e]) (1)

We say the Chord ci ⊃ cj is a super-Chord of cj if ci de-
scribes the coincidence of a superset of the Tones from cj.

Definition 8. Let the support set of a Chord be the sym-
bolic interval series of all maximal intervals. The support
sup(c) of a Chord c is the duration of the support set.

Often, the support set will be restricted to intervals with
a duration of at least δ > 0, to exclude very short temporal
phenomena that are not meaningful for the application un-
der study. In Figure 5 the occurrences of the Tones A, B,
and C are shown in the top segment. In the middle segment
all maximal Chords of size 2 and 3 are shown. All support
sets consist of two intervals. The occurrence of a Chord pat-
tern implies the occurrence of all sub-Chords on the same
interval, e.g. AB, BC, and AC for ABC. In general larger
Chords can be considered more interesting, because they
are more specific. We use the concept of closedness to non-
redundantly represent a set of Chords motivated by closed
itemsets [20].

Figure 5: Simultaneous occuring Tones form max-
imal Chords. Phrases describe a (partial) order of
(not neccessarily maximal) Chords.

Definition 9. A Chord ci is closed if there are no super-
Chords that have the same support, i.e., ∀cj ⊃ ci, sup(cj) <

sup(ci).

The definition of closedness considers a Chord as closed
even if a larger Chord has only a slightly smaller support
set. With Tone patterns mined from possibly inexact and
erroneous time series this is a harsh restriction. We therefore
introduce the relaxed concept of margin-closedness to prune
patterns with very similar support.

Definition 10. A Chord ci is margin-closed w.r.t. a
threshold α < 1 if there are no super-Chords that have al-

most the same support, i.e., ∀cj ⊃ ci,
sup(cj)

sup(ci)
< 1− α.

The third segment in Figure 5 shows all margin-closed
Chords (α = 0.1). The Chord BC is not closed, because
whenever it is observed, so is the super-Chord ABC. The
Chord AC is closed, but not margin-closed, because the sup-
port set of the super-Chord ABC is only slightly smaller.

Chords are similar in structure to the well known itemsets
[1]. Each Tone symbol is an item, while a Chord is a subset
of all items. The set of all margin-closed Chords can be
mined with a modified version of the CHARM [32] algorithm
for mining closed itemsets [17].

Definition 11. A Phrase pattern is a semiotic triple p =
(σ, λ, φ

C,E
C

) with σ ∈ Σ, λ ∈ Λ, and a characteristic function

φ
C,E
C
∈ Φ indicating the occurrences of the k Chords C =

{ci = (σi, λi, φi)|i = 1, ..., k, k > 0} according to a partial



order E ⊆ {σi}
2 on a given time interval according to the

interval sequence C with occurrences of the Tones C:

φC([s, e]) ← (∀i = 1, ..., k ∃[si, ei] ⊆ [s, e] φi([s, e]))(2)

∧(∃i ∈ {1, ..., k} si = s) (3)

∧(∃i ∈ {1, ..., k} ei = e) (4)

∧(∀i 6= j ∈ {1, ..., k}2 (5)

[σi, si, ei] ≺ [σj , sj , ej ] (6)

⇔ (σi, σj) ∈ E) (7)

We say the Phrase pi ⊃ pj is a super-Phrase of pj if pi

describes the partial order of a superset of of the Chords of
pj and all common Chords have the same partial order.

The characteristic function for a Phrase consists of four
necessary conditions. Line 2 ensures that the intervals of
all Chords are within the Phrase interval, while Line 3 and
Line 4 prevent extra room before the first and after the last
Chord, respectively. The occurrence of a Phrase is thus max-
imal by definition. A Phrase occurs on a particular interval
but not on the sub-intervals. Lines 5-7 require the Chords
to be in the partial order specified by E. Note, that any two
intervals that have an order relation in E are not allowed
to overlap. This restriction makes sense, because Chords
already describe the concept of coincidence. Allowing over-
lapping Chords within a Phrase in general would mean to
repeatedly represent the same concept and can in fact be
equally represented by a larger Chord on the interval where
two Chords overlap. The bottom segment of Figure 5 shows
Chord intervals that are part of a Phrase. The interval for
AB is non-maximal to avoid overlap with the interval of
ABC.

The power of partial order is shown in Figure 6. The two
similar Chord sequences in the bottom rows of Figure 6(a)
and Figure 6(b) are summarized by the partial order graph
of a Phrase shown in Figure 6(c). Note, that similar to [12]
multiple observation intervals of a Tone (here A) are allowed
and treated as distinct intervals in the Phrase. In contrast
to [12] and similar to similar to [9] we further allow that only
a part of an observed interval is used in a pattern. Different
parts of the long Tone interval B in Figure 6(a) are used in
the Chords AB, ABC, and BC. The Phrase in Figure 6(c)
thus summarizes cases where the Tone B in the three Chords
AB, BC, and ABC stems from one (Figure 6(a)) or more
(Figure 6(b)) occurrences of the Tone B.

Definition 12. Let the support set of a Phrase be the
symbolic interval series of all maximal intervals. The sup-
port sup(p) of a Phrase c is the size of the support set.

Definition 13. A Phrase pi is closed if there are no
super-Phrases that have the same support, i.e., ∀pj ⊃
pi, sup(pi) = sup(pj).

Definition 14. A Phrase pi is margin-closed w.r.t. a
threshold α < 1 if there are no super-Phrases that have al-

most the same support, i.e., ∀pj ⊃ pi,
sup(pj)

sup(pi)
< 1− α.

Just as Chords relate to itemsets, Phrases relate to
episodes [16]. The mining of margin-closed Phrases can be
performed in several steps [17, 18]: First, the interval se-
quence of Chords is converted to an itemset sequences with
one itemset per interval where no Chords change containing

(a) Some Chords (b) Similar Chords

(c) Phrase for both

Figure 6: Chords summarize several overlapping
Tones. Phrases summarize similar sequences of
Chords.

all currently active Chords. Next, an algorithm for closed
sequence mining, e.g. CloSpan [31], is applied using a win-
dowing of the itemset sequence. Similar to [6] the closed
sequences are grouped according to their transaction lists.
Each group is then converted to a partial order. We perform
the grouping according to margin-closedness with a modi-
fied version of the CHARM [32] algorithm considering closed
sequences as items and the groups as itemsets.

4. ANALYSIS
Having introduced a new language for the description of

interval patterns, we compare the TSKR to the patterns of
[12, 30] using Allen’s interval relations. We show that the
pattern language of the TSKR has a higher temporal expres-
sivity, is more robust, and has advantages in interpretability.

4.1 Expressivity
In data mining the purpose of a pattern expressed in a

knowledge representation language is to collectively describe
many similar or possibly equal situations observed in the
data. We say a pattern is more expressive than another, if
it summarizes more similar, yet qualitatively different situ-
ations.

We first show that all patterns expressible with pairwise
Allen’s interval relations can also be expressed with the
TSKR by construction. That means that all occurrences
of a single interval pattern described with the pattern for-
mat of [12] can also be described by a single TSKR pattern.
We write AB for a Chord with coinciding Tones A and B.
We write AB → CD for the Phrase expressing the total
order of the Chord AB followed by the Chord CD.

Let I = {(σi, si, ei)|i = 1, ..., k} be all involved sym-
bolic intervals with arbitrary pairwise relations according
to Allen. Let B = {bj} =

Sk

i=1{si, ei} the sorted set of all
interval boundaries. We construct a Phrase with at most
|B| − 1 Chords where the j-th Chord describes the non-
empty coincidence of all σi where si ≤ bj and ei ≤ bj+1 or
is skipped otherwise. The Chords have a complete ordering
according to the indices j.

Consider the example pattern in Figure 7 consisting of six
intervals and at least one representative of each of Allen’s
operators within the pairwise relations. The six resulting
Chords are shown in the bottom row.



Figure 7: Conversion of complex pattern using all
of Allen’s relations to a TSKR pattern.

Note, that a TSKR patterns constructed in this way de-
scribes even more similar situations in the data than the
original pattern using Allen’s relations. In Figure 8(a) sev-
eral instances of Allen’s relation A overlaps B are shown
with the corresponding TSKR pattern A → AB → B. In
Figure 8(b) we give some examples of instances that are also
covered by the TSKR pattern but not by the Allen pattern.
The Phrase also matches observations where the long inter-
val of A and B in Figure 8(a) are interrupted by noise.

(a) Examples of A overlaps B and A→ AB → B.

(b) Examples also described by A→ AB → B.

Figure 8: The TSKR pattern A → AB → B can de-
scribe all instances of Allen’s A overlaps B pattern
and more.

On the other hand it is not always possible to find a single
pattern defined with Allen’s relations to describe all situa-
tions covered by a certain single TSKR pattern. In par-
ticular Phrases that summarize similar situations as in Fig-
ure 6 by utilizing the concept of partial order, cannot be
expressed by a single pattern using all pairwise relations of
Allen. Consider the Chords AB, ABC, BC, and AC as
shown in Figure 6(a) at the bottom resulting from the Tone
patterns A, B, C in the top rows. In Figure 6(b) the same
Tone intervals result in the same Chords but with the mid-
dle two Chords exchanged. Both versions can be captured
in a single Phrase (see Figure 6(c)) using the concept of par-
tial order. The order relation of ABC and BC is simply not
specified, both versions of the pattern match this descrip-
tion. The two similar instances cannot be captured with a
single pattern using the pattern format of [12]. Further, the
instances of the TSKR pattern A→ AB → B in Figure 8(a)
and Figure 8(b) cannot be described with a single pattern
of [12] because they have a different number of intervals.

Even if we restrict ourselves for the moment to TSKR
patterns using only a total order among the Chords in a
Phrase and exactly the same set of participating Tone inter-
vals, constructing a pattern with pairwise Allen’s relations
that describes the same situations in the data is not always
possible. For example the simple Phrase AB → C, i.e.,
Tones A and B occur simultaneously followed by an interval

where the Tones C occurs, covers instances that correspond
to very different relations of Allen. The relation between A

and B could be overlaps, starts, during, finished, equals plus
the corresponding inverses. The relation between A (or B)
and C could be before, meets, or overlaps. See Figure 9 for
examples.

Figure 9: Example of the same simple TSKR Phrase
AB → C with different relations according to Allen.

In summary, a single TSKR pattern can express many
observations in the data where time intervals have a very
similar relative positioning but different relations according
to Allen. In contrast each pattern according to Allen can
also be described with a single TSKR pattern. The TSKR
achieves a higher level of abstraction over small disturbances
in the data while offering clear temporal semantics with the
concepts of coincidence and partial order.

4.2 Robustness
Symbolic interval series or sequences obtained from nu-

meric time series inherit the noise present in the original
data. The interval boundaries gained from preprocessing
steps like discretization of values or segmentation are sub-
ject to noise in the measurements. Such time points should
thus be considered approximate.

Using Allen’s relations to formulate patterns such slight
variations of interval boundaries can create fragmented pat-
terns that describe the same intuitive relationship between
intervals with different operators. An example for two al-
most equal intervals was given in Figure 1. Many more ex-
amples can be constructed. Any pattern using one of Allen’s
relations that requires equality of two interval boundaries
can be destroyed by changing one boundary by one time
unit only.

There are approaches to relax the strictness of Allen’s
relations by using a threshold to consider temporally close
interval boundaries equal [2]. This has not been used in tem-
poral pattern mining. Fragmented patterns are still possible
if noise causes interval boundaries to be shifted around the
threshold value.

In contrast, the Chord and Phrase patterns of the TSKR
are designed to be insensitive to small changes of the inter-
val boundaries. The TSKR operator coincides is extremely
robust. It only considers the intersection of all participat-
ing intervals, any interval can individually be stretched to
infinity without changing the pattern at all. All three cases
in Figure 1 could be represented well with a Chord describ-
ing the coincidence of A and B. The leading and trailing
intervals where only A or B is observed would not be con-
sidered of significant duration for appropriate choices of the
minimum Chord duration.

When making intervals smaller, the pattern breaks down
as soon as the smallest interval disappears - as is true for
both temporal knowledge representations. The robustness
of Phrases directly depend on the Chords. Other aspects of
noisy data like missing intervals similarly affect both repre-



sentations. This can be compensated by allowing alterna-
tives within a pattern [26, 12].

4.3 Interpretability
Interpretability is hard to specify or measure. In [25] nat-

ural language descriptions of time series are generated and
interpreted by experts. The authors suggest that the pre-
sentation should follow the Gricean maxims of quality, rele-
vance, manner, and quantity. We describe the implications
of some of the the maxims in the context of interval patterns
and judge how well the different pattern languages support
this paradigm.

The maxim of relevance requires, that only patterns rel-
evant to the expert are listed. This is a rather application
dependent requirement, still there are differences in how the
pattern languages support this task. The hierarchical struc-
ture of the TSKR enables the user to view and filter lower
level patterns before the next level constructs are searched.
Mining Phrases from only the relevant Chords will be much
faster, fewer and smaller Phrase patterns need to be ana-
lyzed in the next step. This form of pattern representa-
tion supports the human analysis according to the zoom,
filter, and details on demand paradigm [23]. The patterns
expressed with Allen’s relations are commonly mined in a
single step, resulting in a much larger set of patterns for
manual analysis.

The maxim of manner suggests to be brief and orderly
and to avoid obscurity and ambiguity. The TSKR patterns
can be longer or shorter than the Allen patterns of [12].

A pattern of [12] with k intervals always consists of k(k−1)
2

pairwise relations. When counting each Chord and each
consecutive order relation in a Phrase separately the worst
case for the number of atomic relations in a TSKR pattern
is (2k−1)(2k−2) because with 2k interval boundaries there
can be at most 2k − 1 Chords. These Chords would then
occur consecutively involving 2k − 2 binary order relations.
In the best case there is only a single relation if all intervals
are equal and thus form a single Chord. The typical size of
a TSKR pattern given k intervals depends on the data set
at hand (see Section 5).

The textual representation of the TSKR can be argued
to be more orderly and to avoid obscurity because is uses
a hierarchical structure with a partial order relation on the
highest level that offers details on demand. In contrast,
there is no inherent order in the list of pairwise Allen re-
lations. They could be ordered by the intervals of the first
argument of each relation according to an temporal order of
the intervals or the symbolic labels. In either case, the list
needs to be considered as a whole to understand the pattern.

To avoid ambiguity, a given pattern should semantically
describe a single intuitive notion of the relationship of sev-
eral intervals. This is not the case for all of Allen’s relation.
The instances of a single pattern can quantitatively vary sig-
nificantly and represent intuitively different patterns. This
was already demonstrated for the overlaps relation in Fig-
ure 2, similar examples can be constructed for other rela-
tions. Whether different versions of a pattern are seman-
tically equivalent depends on the application. The sepa-
ration of temporal concepts in the TSKR, however, com-
pletely avoids this problem. Chord patterns simply describe
the overlapping parts and ignore the rest of the intervals.
Phrase patterns express the concept of partial order, allow-
ing variation only in the length of Chords and possible gaps.

The ambiguity problem is even worse for the compact pat-
tern format used in [13] and [7]. The exact same instance of
a pattern with k intervals can be written in k!

2
different ways

by consecutively choosing an interval for the next position
in the pattern and excluding duplicates caused by inverse
operators. Again, this is not the case for the TSKR, given
a set intervals and a minimum duration for Chords there is
only one Phrase of all maximal Chords.

5. EXPERIMENTS
We compare the TSKR with Allen’s relations on sym-

bolic interval data describing videos1. Different scenarios
involving a hand moving colored blocks were analyzed with
the Leonard system for recognition of visual events from
video camera input [24]. The scenes include simple actions
like putting one block on another and more complex scenes
where a whole stack of blocks is built. In [9] each scene
is described with a logical formula found by inductive logic
programming in a supervised process. We use the data in
an unsupervised manner and use the ground truth on the
scenarios for evaluation purposes only. We preprocessed the
descriptions by normalizing the argument order, filtering out
some redundant descriptions, and merging scenarios that
were equivalent.

We mined Chords with a minimum support of 1%, mini-
mum size of 1, and a minimum count of 10. This leads to 19
closed Chords and 15 margin-closed Chords using α = 0.1.
We further dropped three Chords of size one not involving
the hand, but rather one of the contacts Tones. These Tones
are only interesting when combined with a hand action. The
lattice of the remaining Chords is shown in Figure 10.

The trivial Chord C9 describes the hand holding the red
block. This Chord has very high support, covering 50% of
all time points and has several super-Chords. C13 and C14
describe the hand holding the red block, while it sits on top
of the green or blue block, respectively. Both have further
super-Chords C11 and C12 where yet another block is part
of the stack. Note, that the support of the super-Chords is
always at least 10% smaller than that of any immediate sub-
Chords, according to α = 0.1. The Chords C2 and C3 in
the upper left represent a stack of three blocks not touched
by the hand. Without looking at the original Video data, it
is unclear at this point which block sits on top and which at
the bottom. For C2 we only know that blue is in the middle,
because it is an argument of both contacts relations. The
co-occurrences of the Chords with the known scenarios are
striking, a selection is listed in Table 1. The Chord patterns
are not sufficient, however, to discriminate the scenarios,
because they always appear in at least two different scenes
that are reversed versions of one another, e.g. stack and
unstack. In order to distinguish each pair, we need patterns
expressing an order among the Chords.

Using a minimum frequency of 12, 20 closed sequential
patterns were found and grouped into 10 margin-closed
Phrases (α = 0.1). The co-occurrences of the Phrases with
the known scenarios showed an almost perfect correspon-
dence, see Table 2. The Phrases further explain the actions
in the videos. The Phrase for the disassemble scenario is
shown with pictures from the original Videos in Figure 11.

For mining patterns expressed with Allen’s relations we
used the format of [12] to avoid ambiguity and counted sup-

1ftp://ftp.ecn.purdue.edu/qobi/ama.tar.Z



C2 (#44, 3%):

CONTACTS-BLUE-GREEN

CONTACTS-BLUE-RED

C3 (#57, 3%):

CONTACTS-BLUE-GREEN

CONTACTS-GREEN-RED

C4 (#124, 19%):

CONTACTS-BLUE-GREEN

ATTACHED-HAND-RED

C7 (#64, 16%):

ATTACHED-BLUE-HAND

C8 (#61, 5%):

ATTACHED-BLUE-HAND

ATTACHED-BLUE-GREEN

C9 (#213, 50%):

ATTACHED-HAND-RED

C10 (#116, 11%):

ATTACHED-HAND-RED

ATTACHED-BLUE-GREEN

C13 (#89, 8%):

ATTACHED-HAND-RED

ATTACHED-BLUE-RED

C14 (#149, 12%):

ATTACHED-HAND-RED

ATTACHED-GREEN-RED

C11 (#57, 5%):

ATTACHED-HAND-RED

ATTACHED-BLUE-GREEN

ATTACHED-BLUE-RED

C12 (#59, 5%):

ATTACHED-HAND-RED

ATTACHED-BLUE-GREEN

ATTACHED-GREEN-RED

C15 (#176, 16%):

ATTACHED-BLUE-GREEN

Figure 10: The lattice of the most interesting margin-closed Chords from the Video data annotated with
frequency (#) and support (%). The three Chords in the upper right represent the hand holding one of the
three blocks. The two most specific Chords with three Tones describe a stack of three blocks with the hand
holding the topmost block.

BLUE-CONTACTS-RED

BLUE-CONTACTS-GREEN

HAND-HOLDS-RED

BLUE-CONTACTS-RED

BLUE-CONTACTS-GREEN

HAND-HOLDS-RED

BLUE-CONTACTS-GREEN

HAND-HOLDS-BLUE

BLUE-CONTACTS-GREEN
HAND-HOLDS-BLUE

Figure 11: Video frames [9] and Phrase explaining the complete disassemble scene.
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stack 0 28 30
unstack 0 29 30
assemble 14 0 34
disassemble 30 0 30

Table 1: Co-occurrences of Chords and Video
scenes.

port as occurrences in windows [13] to be comparable with
the Phrase mining. We further pruned the set of patterns
applying the concept of margin-closedness in a brute force
post-processing step. Using minimum size of two and a min-
imum frequency of 10, 363 patterns were found, 174 of which
were margin-closed for α = 0.1. This large amount of pat-
terns could not be analyzed manually, some filtering needed
to be applied.

We first looked at the 14 largest patterns with five or more
intervals. Patterns of these sizes were only observed within
the (dis)assemble scenes with at most 21 out of 30 repeti-

Figure 12: Example of frequent Allen pattern A1
explaining only fragments of the disassemble scene
in Figure 11.

tions. The patterns for the assemble scene further described
only fragments of the true temporal phenomena. None of
them contained any information about the hand taking the
red block and placing it on top of the stack. We alternatively
filtered the mining results by a minimum frequency of 24 and
a minimum size of three. These patterns were all composed
of only three symbolic intervals, not sufficiently explaining
the complex events of these scenes. As an example we show
a pattern found in 26 out of 30 of the disassemble scenes in
Figure 12. The intervals only correspond to the first three
video frames of Figure 11 and fail to mention important
parts of the scene. The TSKR Phrases consist of up to 10
(sub-)intervals providing much more information.

Apart from the more specific explanations that the TSKR
patterns provide, they are also almost always more pre-
cise and more distinctive than the Allen patterns of [12],
as shown in Table 3. For each video scene, precision and
recall of the best pattern from each representation was cal-
culated. Only the recall for the complex assemble scene is
better for Allen/Höppner. In this case the TSKR pattern
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stack 28 0 0 0
unstack 0 28 0 0
assemble 0 0 28 0
disassemble 0 0 0 30

Table 2: Co-occurrences of Phrases and Video
scenes.

is much more complex and provides better insight into the
temporal phenomena of the scene sacrificing some discrimi-
nation power for explanation.

A detailed analysis of the pattern for put-down revealed
five visually very similar patterns with the same intervals
but slightly different pairwise relations (see Figure 13). Only
the first combination is frequent enough to appear in the
mining result, the others would commonly be filtered out
from the large amount of patterns found because they are
small and rare.

We further evaluated the typical size of TSKR patterns
on this data set. We ordered the intervals by their start
points and end points. Each interval was used to generate
a pattern of size k by selecting the next k − 1 intervals as
long as consecutive intervals shared at least one time point.

Such a pattern can be described by k(k−1)
2

of Allen’s re-
lations. For the creation of TSKR patterns we considered
all intervals between any two consecutive time points taken
from the de-duplicated set of the 2k start and end points

Scenes TSKR Allen/Höppner
Precision Recall Precision Recall

pick-up 100.0 100.0 42.3 36.7
put-down 97.8 62.0 41.9 60.0
stack 100.0 93.3 80.0 66.7
unstack 100.0 93.3 100.0 90.0
assemble 100.0 93.3 100.0 100.0
disassemble 100.0 100.0 76.5 86.7

Table 3: Precision and recall for Allen and TSKR
patterns.
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Figure 14: Fixed size of Allen patterns compared to
typical size of TSKR patterns given k intervals of
the video data.

of the k intervals. Assuming the strictest minimum Chord
duration of 1, we created a Chord for each of these intervals
describing the coincidence of all original intervals that inter-
sect it. Finally, a Phrase describing the total order of these
Chords was considered. Let the size of the de-duplicated set
of time points be l. Counting each Chord and each consec-
utive order within a Phrase as an elementary relations, the
size of the TSKR pattern is (l − 1) + (l − 2). In Figure 14
the mean and standard deviation, as well as the minimum
and maximum of the TSKR pattern sizes are compared to
the fixed size of Allen patterns for several values of k.

For very small k Allen’s relations can usually more com-
pactly describe a group of intervals. As an explanation con-
sider the example A overlaps B from Figure 8(a). While
there is only one relation of Allen for the two intervals, the
TSKR considers 3 Chords with 2 order relations (size 5). For
larger patterns the opposite effect is observed on this data
set. For k = 4 the typical size of TSKR patterns is about the
same than that of the Allen patterns and for larger patterns
it is much smaller. Even the maximum TSKR pattern size
observed on this data set is well below the size of Allen pat-
terns for k ≥ 7. The more intervals are involved, the more
the pattern size seems to profit from Chords that group more
than 2 concurrently observed intervals. For k = 8 only few
TSKR patterns, all of the same size, could be constructed
with the process described above, for k ≥ 9 no such patterns
were available.



Figure 13: Five similar patterns for put-down only one of which is frequent. A is the hand holding the red
block, B is the placing of the red on top of the green block, C is the red on the green block without the hand.

6. DISCUSSION
The descriptions found by the TSKM in the Video data

in an unsupervised process directly explained the known ex-
perimental setups. Several valid patterns based on Allen’s
relations were also found, but they mostly explained only
fragments of the scenarios and showed less correspondence
to the ground truth. This was partly explained by pattern
fragmentation.

In [12] the rule sets are defragmented with disjunctions of
patterns but this makes the result even longer and harder
to understand. Take for example a rule disjunctively com-
bining the 5 cases of Figure 13. Another solution to the
problem is to use thresholds, effectively merging the prob-
lematic patterns. This does not solve the problems of ambi-
guity and comprehensibility, however, and poses the prob-
lem of threshold selection. Ambiguity could be reduced by
splitting patterns with potential high variability into several
different patterns, e.g. using the mid points [22]. But using
49 instead of 13 relations with many additional conditions
requiring equality of time points will in turn increase effects
of pattern fragmentation.

The reason for the TSKR being more expressive than
Höppner’s representation using Allen’s relation is the per-
mission of partial order and of subintervals in patterns. One
could also mine partially related Allen’s patterns by allowing
blanks in the matrix of pairwise relations. This would make
the mining even more costly. Further, imagine being given
a listing of 10 pairwise relations of 5 intervals and the task
to draw a qualitative example of the pattern. This is not at
all a trivial task, many dependencies need to be considered.
In fact, this corresponds to the constraint satisfaction prob-
lem of temporal reasoning which is NP-complete [28]. The
same task is rather easy given a description in the TSKR
language and shouldn’t this be the case in order to call a
pattern understandable?

If the semantics of Allen’s relations are explicitly desired
for an application, one should be aware of the negative ef-
fects of noise and the general disadvantages of this represen-
tation for knowledge discovery. For small patterns a quali-
tative visualization of the pattern might not adequately rep-
resent all instances found as there can be large quantitative
differences. For larger patterns this effect may be weaker
because with more pairwise relations there are fewer pos-
sibilities for quantitative variance. In addition to interval
based pattern visualizations, the TSKR also offers a more
abstract graph visualization of Phrases and Chords.

The TSKR was designed for unsupervised learning in
noisy interval data. It can just as well be used with data
where exact relations of interval endpoints matter. It is as-
sumed in general, however, that the temporal process pro-
ducing the symbolic interval is not chaotic and the proper-
ties described by Tones can be observed during intervals of
a minimum length meaningful to the analyst. We believe
that other data mining tasks like classification or anomaly

detection can also profit from the high robustness and high
understandability of the TSKR. Other possible extensions
of the TSKR include the use of quantitative information
[12], generation of implication rules [1, 12, 5, 30], and fuzzy
itemsets and association rules [8].

7. SUMMARY
We presented a novel way of extracting understandable

patterns from multivariate temporal data with the aim of
knowledge discovery. We defined the Time Series Knowl-
edge Representation (TSKR), a new pattern language for
expressing temporal knowledge. Efficient algorithms for
mining such patterns are available [17, 18]. The TSKR
is more robust, more expressive, and better interpretable
than previously proposed approaches using Allen’s rela-
tions. Unsupervised pattern mining with the TSKR was
demonstrated using video data. Compared to Allen, many
fewer patterns needed to be analyzed with the TSKR and
they were more specific and more accurate.
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